您的当前位置:首页新闻中心学术活动
学术报告:Constructing permutation polynomials over finite fields
文章来源: 发布时间:2017-03-13 【字号:

  题目:Constructing permutation polynomials over finite fields 

  报告人:Prof.  Qiang Wang  (Carleton University) 

  时间: 2017315日(星期三), 上午9:30-11:00 

  地点:中国科学院信息工程研究所3号楼3101 

  Abstract: 

  A permutation polynomial (PP) f over a finite field is a nonzero polynomial that acts as a permutation of the elements of the field, i.e., the map $x \rightarrow f(x)$ is one-to-one. Equivalently, the size of the value set of $f$ is the extreme case. The study of permutation polynomials over a finite field goes back to 19th century when Hermite and later Dickson pioneered this area of research.  

  In recent years, permutation polynomials have attracted a lot of attention due to their applications in many areas of science and engineering.  As a consequence, a lot of progress have been made recently by many researchers. In this talk I will report some of recent results on constructing PPs.   

  Bio: 

  王强, 加拿大卡尔顿大学(Carleton University)数学及统计系教授。 加拿大纽芬兰纪念大学(Memorial University of Newfoundland)获得数学博士学位。 2010年曾在清华大学高等研究所做访问学者。主要研究方向是有限域及其应用。 在国际数学期刊发表论文多篇。 

附件: