文章来源: | 发布时间:2017-03-13 | 【字号: 小 中 大 】 |
题目:Constructing permutation polynomials over finite fields
报告人:Prof. Qiang Wang (Carleton University)
时间: 2017年3月15日(星期三), 上午9:30-11:00
地点:中国科学院信息工程研究所3号楼3101室
Abstract:
A permutation polynomial (PP) f over a finite field is a nonzero polynomial that acts as a permutation of the elements of the field, i.e., the map $x \rightarrow f(x)$ is one-to-one. Equivalently, the size of the value set of $f$ is the extreme case. The study of permutation polynomials over a finite field goes back to 19th century when Hermite and later Dickson pioneered this area of research.
In recent years, permutation polynomials have attracted a lot of attention due to their applications in many areas of science and engineering. As a consequence, a lot of progress have been made recently by many researchers. In this talk I will report some of recent results on constructing PPs.
Bio:
王强, 加拿大卡尔顿大学(Carleton University)数学及统计系教授。 加拿大纽芬兰纪念大学(Memorial University of Newfoundland)获得数学博士学位。 2010年曾在清华大学高等研究所做访问学者。主要研究方向是有限域及其应用。 在国际数学期刊发表论文多篇。
附件: |
©中国科学院信息工程研究所信息安全国家重点实验室 备案序号:京ICP备12047326-1号 电话:010-82546611 传真:010-82546564 地址:北京市海淀区闵庄路甲89号 100093 |